Керамические материалы обладают рядом характеристик, таких как высокая температура плавления, высокая твердость, высокая износостойкость и стойкость к окислению, и широко используются в различных областях народного хозяйства, таких как электронная промышленность, автомобильная промышленность, текстильная, химическая промышленность и аэрокосмическая промышленность. . Физические свойства керамических материалов во многом зависят от их микроструктуры, что является важной областью применения СЭМ. Что такое керамика? Керамические материалы представляют собой класс неорганических неметаллических материалов, изготовленных из природных или синтетических соединений путем формовки и высокотемпературного спекания, и их можно разделить на общие керамические материалы и специальные керамические материалы. Специальные керамические материалы можно классифицировать по химическому составу: оксидная керамика, нитридная керамика, карбидная керамика, боридная керамика, силицидная керамика и т. д.; По своим характеристикам и применению можно разделить на структурную керамику и функциональную керамику. Рисунок 1. Микроскопическая морфология керамики из нитрида бора. СЭМ помогает изучать свойства керамических материалов С непрерывным развитием общества, науки и техники требования людей к материалам растут, что требует более глубокого понимания различных физических и химических свойств керамики. Физические свойства керамических материалов во многом зависят от их микроструктуры [1], а изображения СЭМ широко используются в керамических материалах и других областях исследований благодаря их высокому разрешению, широкому регулируемому диапазону увеличения и стереоскопическому изображению. Сканирующий электронный микроскоп с полевой эмиссией CIQTEK SEM5000 можно использовать для легкого наблюдения микроструктуры керамических материалов и связанных с ними продуктов, а также рентгеновский энергетический спектрометр можно использовать для быстрого определения элементного состава материалов. Применение СЭМ при исследовании электронной керамики Крупнейшим конечным рынком промышленности специальной керамики является электронная промышленность, где титанат бария (BaTiO3) широко используется в многослойных керамических конденсаторах (MLCC), термисторах (PTC) и других электронных устройствах. Компоненты из-за его высокой диэлектрической проницаемости, превосходных сегнетоэлектрических и пьезоэлектрических свойств, а также устойчивости к напряжению и изоляционных свойств [2]. С быстрым развитием электронной информационной индустрии спрос на титанат бария увеличивается, а электронные компоненты становятся все меньше и миниатюрнее, что также выдвигает более высокие требования к титанату бария. Исследователи часто регулируют свойства, изменяя температуру спекания, атмосферу, легирование и другие процессы подготовки. Но суть в том, что изменения в процессе приготовления вызывают изменение микроструктуры материала и, следовательно...
Посмотреть большеМеталлические материалы — это материалы с такими свойствами, как блеск, пластичность, легкая проводимость и теплопередача. Их обычно делят на два типа: черные и цветные металлы. К черным металлам относятся железо, хром, марганец и др. [1]. Среди них сталь является основным конструкционным материалом и называется «скелетом промышленности». До сих пор сталь по-прежнему доминирует в составе промышленного сырья. Многие сталелитейные компании и научно-исследовательские институты используют уникальные преимущества SEM для решения производственных задач и помощи в разработке новой продукции. СЭМ с соответствующими аксессуарами стал любимым инструментом сталелитейной и металлургической промышленности для проведения исследований и выявления проблем в производственном процессе. С увеличением разрешения и автоматизации СЭМ применение СЭМ для анализа и определения характеристик материалов становится все более распространенным [2]. Анализ отказов — это новая дисциплина, которая в последние годы стала популяризироваться военными предприятиями среди ученых-исследователей и предприятий [3]. Выход из строя металлических деталей может привести к ухудшению характеристик детали в незначительных случаях и даже к несчастным случаям, связанным с безопасностью жизни в серьезных случаях. Выявление причин сбоев посредством анализа сбоев и предложение эффективных мер по улучшению является важным шагом для обеспечения безопасной эксплуатации проекта. Поэтому полное использование преимуществ сканирующей электронной микроскопии внесет большой вклад в прогресс индустрии металлических материалов. 01 СЭМ-наблюдение разрушения металлов при растяжении Перелом всегда происходит в самом слабом месте металлической ткани и фиксирует много ценной информации обо всем процессе перелома. Поэтому при изучении переломов особое внимание уделяется наблюдению и изучению переломов. Морфологический анализ разрушения используется для изучения некоторых основных проблем, которые приводят к разрушению материала, таких как причина разрушения, природа разрушения и способ разрушения . Если необходимо глубже изучить механизм разрушения материала, обычно анализируют состав макрообластей на поверхности разрушения. Анализ разрушения теперь стал важным инструментом анализа отказов металлических компонентов. Рисунок 1. Морфология разрушения при растяжении CIQTEK SEM3100 По характеру разрушения перелом условно можно разделить на хрупкий и пластичный . Поверхность излома при хрупком изломе обычно перпендикулярна растягивающему напряжению, и с макроскопической точки зрения хрупкий излом представляет собой блестящую кристаллическую блестящую поверхность; в то время как пластичный перелом обычно имеет крошечную выпуклость на изломе и является фиброзным. Экспериментальной основой анализа разрушения является прямое наблюдение и анализ макроскопической морфологии и микроструктурных характеристик поверхности разрушения. Во многих случаях характе...
Посмотреть большеВ научных исследованиях пыльца имеет широкий спектр применения. По словам доктора Лими Мао из Нанкинского института геологии и палеонтологии Китайской академии наук, путем извлечения и анализа различной пыльцы, отложившейся в почве, можно понять, от каких родительских растений они произошли, и, таким образом, сделать вывод об окружающей среде и климате. в это время. В области ботанических исследований пыльца в основном предоставляет микроскопические справочные данные для систематической систематики. Что еще более интересно, доказательства пыльцы также могут быть использованы в уголовных расследованиях. Судебно-палинологическая экспертиза может эффективно подтвердить факты преступления, используя доказательства спектра пыльцы на одежде подозреваемого и на месте преступления. В области геологических исследований пыльца широко использовалась для реконструкции истории растительности, прошлой экологии и исследований изменения климата. В археологических исследованиях, посвященных ранним земледельческим цивилизациям и средам обитания человека, пыльца может помочь ученым понять историю раннего одомашнивания растений человеком, какие продовольственные культуры выращивались и т. д. Рис. 1. Изображение 3D-модели пыльцы (сделано доктором Лими Мао, продукт разработан доктором Оливером Уилсоном) Размер пыльцы варьирует от нескольких микрон до более двухсот микрон, что выходит за пределы разрешающей способности визуального наблюдения и требует использования микроскопа для наблюдения и изучения. Пыльца бывает самой разнообразной морфологии, включая вариации по размеру, форме, структуре стенок и орнаменту. Орнаментация пыльцы является одним из ключевых оснований для идентификации и различения пыльцы. Однако разрешение оптического биологического микроскопа имеет физические ограничения: трудно точно наблюдать различия между различными орнаментациями пыльцы, и даже орнаментацию некоторых мелких пыльц невозможно наблюдать. Поэтому ученым необходимо использовать сканирующий электронный микроскоп (СЭМ) с высоким разрешением и большой глубиной резкости, чтобы получить четкое представление о морфологических особенностях пыльцы. При изучении ископаемой пыльцы можно идентифицировать конкретные растения, которым принадлежит пыльца, чтобы более точно понять информацию о растительности, окружающей среде и климате того времени. Микроструктура пыльцы Недавно исследователи использовали CIQTEK Tungsten Filament SEM3100 и CIQTEK Field Emission SEM5000 для микроскопического наблюдения различных видов пыльцы . Рис. 2. Вольфрамовая нить CIQTEK SEM3100 и автоэмиссионный SEM5000. 1. Цветение вишни Пыльцевые зерна шаровидно-продолговатые. Имея три бороздки пор (без обработанной пыльцы поры не заметны), бороздки достигают обоих полюсов. Наружная стена с полосчатым орнаментом. 2. Кресс-салат китайский фиалковый (Orychophragmus violaceus) Морфология пыльцы китайского фиолетового кресс-салата эллипсоидная, с 3 бороздк...
Посмотреть большеРасширяемые микросферы, небольшие термопластические сферы, инкапсулированные газом, состоят из оболочки из термопластичного полимера и инкапсулированного жидкого алканового газа. Когда микросферы нагреваются, оболочка размягчается, и внутреннее давление воздуха резко возрастает, в результате чего микросферы резко расширяются в 60 раз по сравнению с их первоначальным объемом, давая им двойную функцию легкого наполнителя и вспенивающего агента. Будучи легким наполнителем, расширяемые микросферы могут значительно снизить вес продуктов с очень низкой плотностью, и измерение их плотности очень важно. Рисунок 1 Расширяемые микросферы Принцип работы измерителя истинной плотности серии EASY-G 1330 Измеритель истинной плотности серии EASY-G 1330 основан на принципе Архимеда, используя газ с малым молекулярным диаметром в качестве зонда и уравнение состояния идеального газа PV = nRT для расчета объема газа, выделяемого из материала при определенных условиях температуры и давления. чтобы определить истинную плотность материала. Газ с малым молекулярным диаметром может использоваться в качестве азота или гелия, поскольку гелий имеет наименьший молекулярный диаметр и является стабильным инертным газом, который нелегко вступает в реакцию с образцом путем адсорбции, поэтому в качестве газа-заменителя обычно рекомендуется гелий. Преимущества измерителя истинной плотности серии EASY-G 1330 В измерителе истинной плотности серии EASY-G 1330 в качестве зонда используется газ, который не повреждает испытуемый образец, и образец можно сразу переработать; а в процессе тестирования газ не вступает в реакцию с образцом и не вызывает коррозии оборудования, поэтому коэффициент безопасности процесса использования высок; кроме того, газ обладает характеристиками легкой диффузии, хорошей проницаемости и хорошей стабильности, что позволяет быстрее проникать во внутренние поры материала и делать результаты испытаний более точными. Экспериментальная процедура ①Прогрев: откройте главный клапан баллона и редукционный стол, включите выключатель питания не менее чем за полчаса до этого, выходное давление редукционного стола газа: 0,4 ± 0,02 МПа; ②Калибровка прибора: перед началом эксперимента откалибруйте прибор с помощью стандартных стальных шариков, чтобы убедиться, что объем испытанных стальных шариков во всех трубопроводах оборудования находится в пределах стандартного значения перед началом эксперимента; ③Определение объема пробирки с образцом: установите пустую пробирку с образцом в полость прибора и затяните ее, настройте программное обеспечение, определите объем пробирки с образцом и запишите соответствующий объем пробирки с образцом в конце эксперимента; ④Взвешивание образца: Чтобы уменьшить ошибку тестирования, необходимо взвесить как можно больше образцов. При каждом тесте образец должен взвешиваться примерно до 3/4 объема пробирки, взвешиваться массой пустой пробирки M1, добавлять образец и взвесьте М2 д...
Посмотреть большеВ последнее время мировые цены на нефть резко выросли, и индустрия возобновляемых источников энергии, представленная солнечными фотоэлектрическими (PV) электростанциями, привлекла широкое внимание. В центре внимания находятся перспективы развития и рыночная стоимость солнечных фотоэлектрических элементов, которые являются основным компонентом производства фотоэлектрической энергии. На мировом рынке аккумуляторов фотоэлектрические элементы составляют около 27%[1]. Сканирующий электронный микроскоп играет большую роль в совершенствовании производственного процесса и связанных с ним исследованиях фотоэлектрических элементов. Фотоэлектрический элемент представляет собой тонкий лист оптоэлектронного полупроводника, который преобразует солнечную энергию непосредственно в электрическую энергию. В настоящее время коммерческие фотоэлектрические элементы массового производства представляют собой в основном кремниевые элементы, которые делятся на элементы из монокристаллического кремния, элементы из поликристаллического кремния и элементы из аморфного кремния. Методы текстурирования поверхности для повышения эффективности солнечных элементов В реальном процессе производства фотоэлектрических элементов, чтобы еще больше повысить эффективность преобразования энергии, на поверхности элемента обычно создается специальная текстурированная структура, и такие элементы называются «неотражающими» элементами. В частности, текстурированная структура на поверхности этих солнечных элементов улучшает поглощение света за счет увеличения количества отражений излучаемого света на поверхности кремниевой пластины, что не только снижает отражательную способность поверхности, но и создает внутри световые ловушки. Ячейка, тем самым значительно увеличивая эффективность преобразования солнечных элементов, что важно для повышения эффективности и снижения стоимости существующих кремниевых фотоэлектрических элементов[2]. Сравнение плоской поверхности и поверхности пирамидальной структуры По сравнению с плоской поверхностью, кремниевая пластина с пирамидальной структурой имеет более высокую вероятность того, что отраженный свет падающего света снова будет действовать на поверхность пластины, а не отражаться непосредственно обратно в воздух, тем самым увеличивая количество рассеянного света. и отражается на поверхности структуры, позволяя поглощать больше фотонов и образуя больше электронно-дырочных пар. Путь света для разных углов падения света на пирамидальную структуру Обычно используемые методы текстурирования поверхности включают химическое травление, реактивное ионное травление, фотолитографию и механическую обработку канавок. Среди них метод химического травления широко используется в промышленности из-за его дешевизны, высокой производительности и простоты метода [3] . Для фотоэлементов из монокристаллического кремния обычно используется анизотропное травление щелочным раствором на разных кристаллических ...
Посмотреть большеЛекарственный порошок является основной частью большинства лекарственных форм, и его эффективность зависит не только от типа лекарства, но и в значительной степени от свойств порошка, из которого состоит агент, включая размер частиц, форму, свойства поверхности и другие виды параметров. Удельная площадь поверхности и структура размера пор порошков лекарственных средств связаны со свойствами частиц порошка, такими как размер частиц, гигроскопичность, растворимость, растворение и уплотнение, которые играют важную роль в возможностях очистки, обработки, смешивания, производства и упаковки лекарственных препаратов. фармацевтические препараты. Кроме того, срок действия, скорость растворения, биодоступность и эффективность лекарств также зависят от удельной площади поверхности материала. Вообще говоря, чем больше удельная поверхность фармацевтических порошков в определенном диапазоне, тем быстрее будет соответственно ускоряться растворение и скорость растворения, что обеспечивает равномерное распределение содержания лекарственного средства; однако слишком большая удельная поверхность приведет к адсорбции большего количества воды, что не способствует сохранению и стабильности эффективности лекарственного средства. Поэтому точное, быстрое и эффективное тестирование удельной поверхности фармацевтических порошков всегда было незаменимой и важной частью фармацевтических исследований. Пример применения CIQTEK в фармацевтическом порошке Мы объединяем фактические случаи характеристики различных порошковых материалов лекарственных препаратов, чтобы четко показать методы и применимость этой технологии для характеристики физических свойств различных поверхностей лекарственных средств, а затем провести базовый анализ срока годности, скорости растворения и эффективности лекарств, а также помочь фармацевтической промышленности развиваться качественно. Анализатор удельной поверхности и размера пор серии V-Sorb X800 представляет собой высокопроизводительный, быстрый и экономичный прибор, который может осуществлять быстрое тестирование удельной площади поверхности входящей и исходящей готовой продукции, анализ распределения пор по размерам, контроль качества, корректировку параметров процесса. и прогнозирование эффективности лекарств и т. д. Автоматический анализатор площади поверхности и порометрии BET серии CIQTEK EASY-V СЭМ CIQTEK 1. Сканирующий электронный микроскоп и анализатор удельной поверхности и размера пор в дисперсии монтмориллонита. Монтмориллонит получают в результате очистки и переработки бентонита, который имеет уникальные преимущества в фармакологии благодаря своей особой кристаллической структуре с хорошей адсорбционной способностью, катионообменной способностью, способностью к водопоглощению и набуханию. Например: в качестве API, синтеза лекарств, фармацевтических вспомогательных веществ и т. д. Монтмориллонит имеет пластинчатую структуру и большую удельную поверхность, что м...
Посмотреть большеМеталлические материалы — это материалы с такими свойствами, как блеск, пластичность, легкая проводимость и теплопередача. Обычно его делят на два типа: черные металлы и цветные металлы. К черным металлам относятся железо, хром, марганец и др. В составе промышленного сырья пока еще преобладают железо и сталь. Многие сталелитейные компании и научно-исследовательские институты используют уникальные преимущества SEM для решения проблем, возникающих на производстве, а также для оказания помощи в исследованиях и разработке новой продукции. Сканирующая электронная микроскопия с соответствующими аксессуарами стала для сталелитейной и металлургической промышленности выгодным инструментом для проведения исследований и выявления проблем в производственном процессе. С увеличением разрешения и автоматизации СЭМ применение СЭМ для анализа и определения характеристик материалов становится все более распространенным. Анализ отказов — это новая дисциплина, которая в последние годы стала популяризироваться военными предприятиями среди ученых и предприятий. Выход из строя металлических деталей может привести к ухудшению характеристик детали в незначительных случаях и к несчастным случаям, связанным с безопасностью жизни, в серьезных случаях. Выявление причин сбоев посредством анализа сбоев и предложение эффективных мер по улучшению являются важными шагами для обеспечения безопасной эксплуатации проекта. Поэтому полное использование преимуществ сканирующей электронной микроскопии внесет большой вклад в прогресс индустрии металлических материалов. 01 Электронно-микроскопическое наблюдение разрушения металлических деталей при растяжении Перелом всегда происходит в самой слабой части металлической ткани и записывает много ценной информации обо всем процессе перелома, поэтому при изучении перелома всегда уделялось особое внимание наблюдению и изучению перелома. Морфологический анализ разрушения используется для изучения некоторых основных проблем, которые приводят к разрушению материала, таких как причина разрушения, характер разрушения и способ разрушения. Если мы хотим глубже изучить механизм разрушения материала, нам обычно приходится анализировать состав микрозоны на поверхности разрушения, и анализ разрушения теперь стал важным инструментом анализа разрушения металлических компонентов. Рис. 1. Морфология разрушения при растяжении сканирующего электронного микроскопа CIQTEK SEM3100. По характеру разрушения переломы можно разделить на хрупкие и пластические. Поверхность излома при хрупком изломе обычно перпендикулярна растягивающему напряжению, а хрупкий излом представляет собой блестящую кристаллическую, яркую с макроскопической точки зрения поверхность; Пластический перелом обычно волокнистый с мелкими ямочками на изломе при макроскопическом взгляде. Экспериментальной основой анализа разрушения является непосредственное наблюдение и анализ макроскопических морфологических и микрострук...
Посмотреть большеМожете ли вы представить себе жесткий диск ноутбука размером с рисовое зернышко? Скирмион, загадочная квазичастичная структура в магнитном поле, может воплотить эту, казалось бы, немыслимую идею в реальность, имея больше места для хранения и более высокую скорость передачи данных для этого «рисового зернышка». Так как же наблюдать эту странную структуру частиц? CIQTEK Quantum Diamond Atomic Силовой микроскоп (QDAFM), основанный на азотно-вакансионном центре (NV) при сканировании алмаза и АСМ, может дать вам ответ. Что такое Скирмион С быстрым развитием крупномасштабных интегральных схем, чип процесса в нанометровом масштабе, квантовый эффект постепенно выдвигается на первый план, и "Закон Мура" столкнулся с физическими ограничениями. В то же время, при такой высокой плотности интегрированных электронных компонентов на кристалле, проблема рассеивания тепла стала огромной проблемой. Людям срочно нужна новая технология, чтобы преодолеть узкое место и способствовать устойчивому развитию интегральных схем. Устройства спинтроники могут достичь более высокой эффективности хранения, передачи и обработки информации за счет использования спиновых свойств электронов, что является важным способом решения вышеупомянутой дилеммы. Ожидается, что в последние годы топологические свойства магнитных структур и связанные с ними приложения станут носителями информации для устройств спинтроники следующего поколения, которые в настоящее время являются одной из горячих точек исследований в этой области. Скирмион (далее именуемый магнитным скирмионом) представляет собой топологически защищенную спиновую структуру с квазичастичными свойствами и, как особый вид магнитной доменной стенки, его структура представляет собой распределение намагниченности с вихрями. Подобно магнитной доменной границе, в скирмионе также существует переворот магнитного момента, но в отличие от доменной стенки скирмион представляет собой вихревую структуру, и его переворот магнитного момента происходит от центра наружу, а распространенные из них - блоховского типа. скирмионы и скирмионы типа Нееля. Рисунок 1: Принципиальная схема структуры скирмиона. (а) Скирмионы типа Нееля (б) Скирмионы типа Блоха Скирмион — естественный носитель информации с превосходными свойствами, такими как простота манипулирования, легкая стабильность, небольшой размер и высокая скорость движения. Таким образом, ожидается, что электронные устройства на основе скирмионов будут соответствовать требованиям к производительности для будущих устройств с точки зрения энергонезависимости, высокой емкости, высокой скорости и низкого энергопотребления. Каковы применения скирмионов Память о ипподроме Скирмиона Память на беговой дорожке использует магнитные нанопроволоки в качестве дорожек и стенки магнитных доменов в качестве носителей, при этом электрический ток приводит в движение границы магнитных доменов. В 2013 году исследователи предложили память на беговой дор...
Посмотреть больше