Узнать больше
  • Почтовый ящик послепродажного обслуживания: info@ciqtek.com
Оставить сообщение
Представлять на рассмотрение
Приложения
CIQTEK SEM Study Shows Raised-Ring Electrodes Improve Aluminum Alloy Spot Welding and Electrode Life
CIQTEK SEM Study Shows Raised-Ring Electrodes Improve Aluminum Alloy Spot Welding and Electrode Life
Aluminum alloys, prized for their exceptional strength-to-weight ratio, are ideal materials for automotive lightweighting. Resistance spot welding (RSW) remains the mainstream joining method for automotive body manufacturing. However, the high thermal and electrical conductivity of aluminum, combined with its surface oxide layer, requires welding currents far exceeding those used for steel. This accelerates copper electrode wear, leading to unstable weld quality, frequent electrode maintenance, and increased production costs. Extending electrode life while ensuring weld quality has become a critical technological bottleneck in the industry.   To address this challenge, Dr. Yang Shanglu's team at Shanghai Institute of Optics and Fine Mechanics conducted an in-depth study using the CIQTEK FESEM SEM5000. They innovatively designed a raised-ring electrode and systematically investigated the effect of ring number (0–4) on electrode morphology, revealing the intrinsic relationship between ring count, crystal defects in the weld nugget, and current distribution. Their results show that increasing the number of raised rings optimizes current distribution, improves thermal input efficiency, enlarges the weld nugget, and significantly extends electrode lifespan. Notably, the raised rings enhance oxide layer penetration, improving current flow while reducing pitting corrosion. This innovative electrode design provides a new technical approach for mitigating electrode wear and lays a theoretical and practical foundation for broader application of aluminum alloy RSW in the automotive industry. The study is published in the Journal of Materials Processing Tech. under the title “Investigating the Influence of Electrode Surface Morphology on Aluminum Alloy Resistance Spot Welding.” Raised-Ring Electrode Design Breakthrough Facing the electrode wear challenge, the team approached the problem from electrode morphology. They machined 0 to 4 concentric raised rings on the end face of conventional spherical electrodes, forming a novel Newton Ring electrode (NTR).   Figure 1. Surface morphology and cross-sectional profile of the electrodes used in the experiment   SEM Analysis Reveals Crystal Defects and Performance Enhancement How do raised rings influence welding performance? Using the CIQTEK FESEM SEM5000 and EBSD techniques, the team characterized the microstructure of weld nuggets in detail. They found that the raised rings pierce the aluminum oxide layer during welding, optimizing current distribution, influencing heat input, and promoting nugget growth. More importantly, the mechanical interaction between raised rings and molten metal significantly increases the density of crystal defects, such as geometrically necessary dislocations (GNDs) and low-angle grain boundaries (LAGBs), within the weld nugget. Optimal performance was observed with three raised rings (NTR3).   Figure 2. EBSD analysis of weld nugget microstruct...
Сканирующий электронный микроскоп CIQTEK обеспечивает прорывное исследование твердотельных аккумуляторов в Tsinghua SIGS, опубликованное в журнале Nature
Сканирующий электронный микроскоп CIQTEK обеспечивает прорывное исследование твердотельных аккумуляторов в Tsinghua SIGS, опубликованное в журнале Nature
Твердотельные литий-металлические аккумуляторы (ТЛМА) широко признаны источником энергии нового поколения для электромобилей и крупномасштабных накопителей энергии, обеспечивая высокую плотность энергии и превосходную безопасность. Однако их коммерциализация долгое время сдерживалась низкой ионной проводимостью твёрдых электролитов и слабой стабильностью интерфейса «твёрдое тело – твёрдое тело» между электродами и электролитами. Несмотря на значительный прогресс в повышении ионной проводимости, разрушение интерфейса при высокой плотности тока или низких температурах остаётся серьёзным препятствием. Исследовательская группа под руководством профессора Фэйю Канга, профессора Яньбина Хэ, доцента Вэй Люй и доцента Тинчжэна Хоу из Института исследования материалов Международной аспирантуры Цинхуа в Шэньчжэне (SIGS) в сотрудничестве с профессором Цюаньхуном Яном из Тяньцзиньского университета предложила Новая концепция конструкции пластичного твердоэлектролитного интерфейса (SEI) чтобы решить эту проблему. Их исследование, озаглавленное «Пластичный твердоэлектролитный интерфазный слой для твердотельных аккумуляторов» , недавно был опубликован в Природа . CIQTEK FE-SEM обеспечивает высокоточную характеристику интерфейса В этом исследовании исследовательская группа использовала Сканирующий электронный микроскоп с полевой эмиссией CIQTEK ( SEM4000X ) для микроструктурная характеристика твердо-твердого интерфейса. FE-SEM от CIQTEK обеспечил высокое разрешение изображения и превосходный контраст поверхности , что позволяет исследователям точно наблюдать эволюцию морфологии и целостность интерфейса во время электрохимического циклирования. Ковкий SEI: новый путь за пределами «только прочности» Парадигма Традиционные SEI с высоким содержанием неорганических компонентов, несмотря на механическую жесткость, склонны к хрупкому разрушению при циклировании, что приводит к росту литиевых дендритов и ухудшению межфазной кинетики. Команда из Цинхуа отошла от парадигмы «только прочность», сделав упор на «пластичность» как на ключевой критерий проектирования материалов SEI. Используя отношение Пью (B/G ≥ 1,75) в качестве индикатора пластичности и скрининг с помощью искусственного интеллекта, они определили сульфид серебра (Ag₂S) и фторид серебра (AgF) как перспективные неорганические компоненты с превосходной деформируемостью и низкими барьерами диффузии ионов лития. Основываясь на этой концепции, исследователи разработали органо-неорганический композитный твердый электролит, содержащий добавки AgNO₃ и наполнители Ag/LLZTO (Li₆.₇₅La₃Zr₁.₅Ta₀.₅O₁₂). В процессе работы аккумулятора реакция замещения in situ преобразовала хрупкие компоненты SEI Li₂S/LiF в пластичные слои Ag₂S/AgF, формируя градиентную структуру SEI «мягкая снаружи, прочная внутри». Такая многослойная конструкция эффективно рассеивает межфазные напряжения, сохраняет структурную целостность в жестких условиях и способствует равномерному осаждению лития. Рисунок 1. Схематическая иллюстрация экранирования комп...
Все, что вы хотите знать о характеристиках MOF
Все, что вы хотите знать о характеристиках MOF
Недавно Нобелевская премия по химии за 2025 год была присуждена Сусуму Китагаве, Ричарду Робсону и Омару Яги в знак признания «их разработки металл-органических каркасов (МОК)». Три лауреата создали молекулярные структуры с огромным внутренним пространством, позволяющим газам и другим химическим веществам свободно проходить через них. Эти структуры, известные как металл-органические каркасы (МОК), находят применение в самых разных областях: от извлечения воды из воздуха пустынь и улавливания углекислого газа до хранения токсичных газов и катализа химических реакций. Металл-органические каркасы (МОК) представляют собой класс кристаллических пористых материалов, образованных ионами или кластерами металлов, связанными органическими лигандами (рис. 1). Их структуру можно представить как трёхмерную сеть «металлические узлы + органические линкеры», сочетающую стабильность неорганических материалов с гибкостью проектирования, характерной для органической химии. Эта универсальная конструкция позволяет создавать МОК практически из любого металла периодической таблицы и широкого спектра лигандов, таких как карбоксилаты, имидазоляты или фосфонаты, что позволяет точно контролировать размер пор, полярность и химическую среду. Рисунок 1. Схема металл-органического каркаса С момента появления первых MOF с постоянной пористостью в 1990-х годах были разработаны тысячи структурных каркасов, включая такие классические примеры, как HKUST-1 и MIL-101. Они обладают сверхвысокой удельной площадью поверхности и объёмом пор, что обеспечивает уникальные свойства для адсорбции газов, хранения водорода, разделения, катализа и даже доставки лекарств. Некоторые гибкие MOF могут претерпевать обратимые структурные изменения под действием адсорбции или температуры, демонстрируя динамическое поведение, такое как «эффект дыхания». Благодаря своему разнообразию, настраиваемости и функционализации, MOF стали ключевой темой в исследованиях пористых материалов и обеспечивают прочную научную основу для изучения адсорбционных характеристик и методов их характеризации. Характеристика MOF Фундаментальная характеристика MOF обычно включает порошковую рентгеновскую дифракцию (PXRD) для определения кристалличности и фазовой чистоты, а также изотермы адсорбции/десорбции азота (N₂) для подтверждения структуры пор и расчета видимой площади поверхности. Другие часто используемые дополнительные методы включают: Термогравиметрический анализ (ТГА) : Оценивает термическую стабильность и в некоторых случаях может оценить объем пор. Испытания на устойчивость к воде : Оценивает структурную стабильность в воде и при различных значениях pH. Сканирующая электронная микроскопия (СЭМ) : Измеряет размер и морфологию кристаллов и может сочетаться с энергодисперсионной рентгеновской спектроскопией (ЭДС) для элементного состава и распределения. Спектроскопия ядерного магнитного резонанса (ЯМР) : Анализирует общую чистоту образца и может количественно определять соотношения лигандов в MOF со смешанными лигандами...
Микроскопия CIQTEK SEM представляет Cu-C-наносферы для преодоления дезактивации катализаторов при очистке сточных вод
Микроскопия CIQTEK SEM представляет Cu-C-наносферы для преодоления дезактивации катализаторов при очистке сточных вод
В условиях ускорения индустриализации и непрерывного роста выбросов загрязняющих веществ органические сточные воды представляют серьёзную угрозу для экосистем и здоровья человека. Статистика показывает, что потребление энергии на очистку промышленных сточных вод составляет 28% от мирового потребления энергии на очистку воды. Однако традиционная технология Фентона страдает от дезактивации катализатора, что приводит к низкой эффективности очистки. Металлические катализаторы в современных процессах окисления сталкиваются с общими узкими местами: окислительно-восстановительный цикл не может эффективно поддерживаться, пути переноса электронов ограничены, а традиционные методы подготовки основаны на высоких температурах и давлении, что обеспечивает выход продукта всего 11–15%. Чтобы решить эти проблемы, исследовательская группа из Даляньский технологический университет Разработан нанокатализатор Cu-C путем направленного связывания коммерческой целлюлозы с ионами меди методом влажной химической гальванической замены. Кроме того, была разработана новая система деградации, включающая двухканальный каталитический механизм (радикальный путь + прямой перенос электронов) и широкая адаптируемость к pH. Материал обеспечил разложение тетрациклина на 65% в течение 5 минут (по сравнению с
От биопроизводства до 3D-печати: CIQTEK SEM способствует прорывам в Университете Нинбо
От биопроизводства до 3D-печати: CIQTEK SEM способствует прорывам в Университете Нинбо
Расширяя границы биопечати с помощью CIQTEK SEM В Институте интеллектуальной медицины и биомедицинской инженерии Университета Нинбо исследователи решают реальные медицинские задачи, объединяя материаловедение, биологию, медицину, информационные технологии и инженерию. Институт быстро стал центром инноваций в области носимых устройств и дистанционного здравоохранения, передовой медицинской визуализации и интеллектуального анализа, стремясь превратить лабораторные достижения в реальные клинические достижения. Недавно доктор Лей Шао, исполнительный заместитель декана Института, поделился основными моментами своего исследовательского пути и рассказал о том, как Передовой SEM от CIQTEK подпитывает открытия своей команды. CIQTEK SEM в Институте интеллектуальной медицины и биомедицинской инженерии Университета Нинбо Печать будущего: от миниатюрных сердец до сосудистых сетей С 2016 года доктор Шао является пионером биопроизводство и 3D-биопечать , с целью создания живых, функциональных тканей вне человеческого тела. Работа его команды охватывает Миниатюрные сердца, напечатанные на 3D-принтере до сложных васкуляризированных структур, имеющих применение в скрининге лекарственных препаратов, моделировании заболеваний и регенеративной медицине. Миниатюрное сердце, напечатанное на 3D-принтере Благодаря финансированию Национального фонда естественных наук Китая и местных исследовательских агентств его лаборатория осуществила несколько прорывов: Стратегии умной биопечати : Использование эффектов намотки жидкостного каната с коаксиальной биопечатью для изготовления микроволокон с контролируемой морфологией, позволяющих создавать сосудистые органоиды. Криоконсервируемые клеточные микроволокна : Разработка стандартизированных, масштабируемых и криоконсервируемых клеточных микроволокон с помощью коаксиальной биопечати с высоким потенциалом для 3D-культивирования клеток, изготовления органоидов, скрининга лекарственных препаратов и трансплантации. Жертвенные биочернила : Печать мезоскопических пористых сетей с использованием жертвенных микрогелевых биочернил, создание питательных путей для эффективной доставки кислорода/питательных веществ. Сложные сосудистые системы : Создание сложных сосудистых сетей с помощью коаксиальной биопечати с одновременным стимулированием отложения эндотелиальных клеток in situ, решение проблем васкуляризации сложных структур. Анизотропные ткани : Создание анизотропных тканей с использованием биочернил, ориентированных на сдвиг, и методов печати с предварительным сдвигом. Конструкции с высокой плотностью клеток : Предлагается оригинальная технология печати с использованием жидкостно-частичной поддерживающей ванны для биочернил с высокой плотностью клеток, позволяющая получать реалистичные биоактивные ткани и одновременно преодолевать давний компромисс между пригодностью к печати и жизнеспособностью клеток в биопечати на основе экструзии. Эти достижения прокладывают путь к созданию функциональных трансплантируемых тканей и, возможно, даже ...
Вершина

Оставить сообщение

Оставить сообщение
Пожалуйста, не стесняйтесь обращаться к нам для получения более подробной информации, запроса ценового предложения или заказа онлайн-демонстрации! Мы ответим вам, как только сможем.
Представлять на рассмотрение

Дом

Продукты

Чат

контакт