Публикация AFM: CIQTEK SEM помогает в исследовании морфологии твердого углерода
Натрий-ионные аккумуляторы (SIB) привлекают внимание как экономически эффективная альтернатива литий-ионным аккумуляторам благодаря высокому содержанию натрия в земной коре (2,6% против 0,0065% для лития). Несмотря на это, SIB все еще отстают по плотности энергии, что подчеркивает необходимость в электродных материалах с высокой емкостью. Твердый углерод является сильным кандидатом на использование анодов SIB благодаря своему низкому потенциалу накопления натрия и высокой емкости. Однако такие факторы, как распределение микродоменов графита, закрытые поры и концентрация дефектов, существенно влияют на начальную кулоновскую эффективность (ICE) и стабильность. Стратегии модификации имеют ограничения. Легирование гетероатомами может повысить емкость, но снизить ICE. Традиционный метод CVD способствует формированию закрытых пор, но его недостатком являются медленное разложение метана, длительные циклы и накопление дефектов. Команда профессора Янь Юй из Китайского университета науки и технологий (USTC) использовали Сканирующий электронный микроскоп CIQTEK (СЭМ) для исследования морфологии различных твёрдых углеродных материалов. Группа разработала метод химического осаждения из газовой фазы (CVD) с использованием катализатора, способствующий разложению CH₄ и регулированию микроструктуры твёрдого углерода. Катализаторы на основе переходных металлов, такие как Fe, Co и Ni, эффективно снижают энергетический барьер разложения CH₄, тем самым повышая эффективность и сокращая время осаждения. Однако Co и Ni, как правило, вызывали чрезмерную графитизацию осажденного углерода, образуя вытянутые графитоподобные структуры как в поперечном, так и в толщинном направлениях, что затрудняло накопление и транспорт ионов натрия. В противоположность этому, Fe способствовало правильной перегруппировке углерода, что приводило к оптимизации микроструктуры с меньшим количеством дефектов и хорошо развитыми графитовыми доменами. Эта оптимизация снижала необратимое накопление натрия, повышала начальную кулоновскую эффективность (ICE) и увеличивала доступность обратимых центров накопления Na⁺. В результате оптимизированный образец твердого углерода (HC-2) достиг впечатляющей обратимой емкости 457 мАч г⁻¹ и высокого значения ICE 90,6%. Более того, рентгеновская дифракция in situ и рамановская спектроскопия in situ подтвердили механизм хранения натрия, основанный на адсорбции, интеркаляции и заполнении пор. Исследование было опубликовано в журнале Современные функциональные материалы под названием: Технология химического осаждения из паровой фазы с использованием катализатора для получения твердого углерода с большим количеством закрытых пор для высокопроизводительных натрий-ионных аккумуляторов. Как показано на рисунке 1а, твёрдый углерод был синтезирован методом химического осаждения из газовой фазы (CVD) с использованием каталитически активного вещества, используя коммерческий пористый углерод в качестве прекурсора и метан (CH₄) в качестве исходного газа. На рисунке 1d показан...