Проводящая паста — это специальный функциональный материал, обладающий как проводящими, так и связующими свойствами, широко используемый в батареях новой энергии, фотоэлектрической, электронной, химической промышленности, полиграфии, военной и авиационной и других областях. Проводящая паста в основном включает проводящую фазу, связующую фазу и органический носитель, из которых проводящая фаза является ключевым материалом проводящей пасты, определяющим электрические свойства пасты и механические свойства после образования пленки. Обычно используемые материалы проводящей фазы включают металл, оксид металла, углеродные материалы, проводящие полимерные материалы и т. д. Установлено, что физические параметры, такие как удельная поверхность, размер пор и истинная плотность материалов проводящей фазы, оказывают важное влияние на проводимость и механические свойства суспензии. Поэтому особенно важно точно охарактеризовать физические параметры, такие как удельная площадь поверхности, распределение пор по размерам и истинная плотность материалов проводящей фазы, на основе технологии газовой адсорбции. Кроме того, точная настройка этих параметров может оптимизировать проводимость паст для удовлетворения требований различных применений. 01 Знакомство с проводящей пастой В зависимости от фактического применения разные типы проводящей пасты не одинаковы, обычно в зависимости от разных типов проводящей фазы их можно разделить на проводящую пасту: неорганическую проводящую пасту, органическую проводящую пасту и композитную проводящую пасту. Неорганическая проводящая паста делится на металлический порошок и неметаллический два вида металлического порошка, в основном золото, серебро, медь, олово и алюминий и т. д., неметаллическая проводящая фаза представляет собой в основном углеродные материалы. Органическая проводящая паста в проводящей фазе представляет собой в основном проводящие полимерные материалы, которые имеют меньшую плотность, более высокую коррозионную стойкость, лучшие пленкообразующие свойства и в определенном диапазоне регулируемую проводимость и так далее. Проводящая паста композитной системы в настоящее время является важным направлением исследований проводящей пасты, цель которого состоит в том, чтобы объединить преимущества неорганической и органической проводящей пасты, органической комбинации неорганической проводящей фазы и органического материала, поддерживающего тело, в полной мере раскрыть преимущества обоих. Проводящая фаза как основная функциональная фаза в проводящей пасте, обеспечивающая электрический путь и достигающая электрических свойств, ее удельная поверхность, размер пор и истинная плотность, а также другие физические параметры оказывают большее влияние на ее проводящие свойства. Удельная площадь поверхности : размер удельной поверхности является ключевым фактором, влияющим на проводимость. В определенном диапазоне большая удельная площадь поверхности о...
Посмотреть большеДля начала, что такое выдержанный рис и новый рис? Выдержанный рис или старый рис — это не что иное, как запасенный рис, который выдерживается в течение одного или нескольких лет. С другой стороны, новый рис — это тот, который производится из недавно собранного урожая. По сравнению со свежим ароматом молодого риса, выдержанный рис легкий и безвкусный, что по сути является изменением внутренней микроскопической морфологической структуры выдержанного риса. Исследователи проанализировали новый рис и выдержанный рис с помощью сканирующего электронного микроскопа с вольфрамовой нитью CIQTEK SEM3100. Давайте посмотрим, чем они отличаются в микроскопическом мире! Сканирующий электронный микроскоп с вольфрамовой нитью CIQTEK SEM3100 Рисунок 1. Морфология переломов поперечного сечения молодого и выдержанного риса. Сначала микроструктуру эндосперма риса наблюдали с помощью SEM3100. На рисунке 1 видно, что клетки эндосперма нового риса представляли собой длинные многоугольные призматические клетки с завернутыми в них крахмальными зернами, а клетки эндосперма располагались в форме радиального веера с центром эндосперма в виде концентрических кругов, а клетки эндосперма в центре были меньше по сравнению с внешними клетками. Радиальная веерообразная структура эндосперма молодого риса была более очевидной, чем у старого риса. Рисунок 2. Морфология микроструктуры центрального эндосперма молодого и выдержанного риса. Дальнейшее наблюдение за центральной тканью эндосперма риса с увеличением показало, что клетки эндосперма в центральной части выдержанного риса были более сломанными, а гранулы крахмала были более обнажены, в результате чего клетки эндосперма располагались радиально и имели размытую форму. Рисунок 3. Морфология микроструктуры белковой пленки на поверхности молодого и выдержанного риса. Белковую пленку на поверхности клеток эндосперма наблюдали при большом увеличении, используя преимущества SEM3100 с визуализацией высокого разрешения. Как видно из рисунка 3, на поверхности молодого риса можно было наблюдать белковую пленку, в то время как белковая пленка на поверхности выдержанного риса была разорвана и имела разную степень коробления, что привело к относительно четкому обнажению внутренних крахмальных гранул. форму за счет уменьшения толщины поверхностной белковой пленки. Рисунок 4. Микроструктура крахмальных гранул эндосперма молодого риса. Клетки эндосперма риса содержат одиночные и сложные амилопласты. Однозернистые амилопласты представляют собой кристаллические многогранники, часто в виде одиночных зерен с тупыми углами и явными разрывами с окружающими амилопластами, содержащие преимущественно кристаллические и аморфные участки, образованные прямоцепочечной и разветвленной амилозой [1,2]. Сложные зернистые амилопласты имеют угловатую форму, плотно расположены и прочно связаны с окружающими амилопластами. Исследования показали, что крахмальные зерна высококачественного риса ...
Посмотреть большеВы когда-нибудь замечали, что на поверхности обычно используемых таблеток или витаминных таблеток есть тонкое покрытие? Это добавка из стеарата магния, которую обычно добавляют в лекарства в качестве смазки. Так почему же это вещество добавляют в лекарства? Что такое стеарат магния? Стеарат магния является широко используемым фармацевтическим вспомогательным веществом. Это смесь стеарата магния (C36H70MgO4) и пальмитата магния (C32H62MgO4) в качестве основных ингредиентов, представляющая собой мелкий белый нешлифующийся порошок, вызывающий скользкость при контакте с кожей. Стеарат магния — одна из наиболее часто используемых смазок в фармацевтическом производстве, обладающая хорошими антиадгезионными, увеличивающими текучесть и смазывающими свойствами. Добавление стеарата магния при производстве фармацевтических таблеток может эффективно уменьшить трение между таблетками и матрицей таблеточного пресса, значительно уменьшая силу воздействия на таблетку фармацевтического таблеточного пресса и улучшая консистенцию и контроль качества препарата. Стеарат магния Изображение из Интернета Ключевым свойством стеарата магния как смазки является его удельная поверхность: чем больше удельная поверхность, тем более полярной она является, тем выше адгезия и тем легче ее равномерно распределить по поверхности частиц в процессе смешивания. тем лучше смазывающая способность. Анализатор поверхности и размера пор V-Sorb серии X800, разработанный CIQTEK методом статического объема, можно использовать для тестирования газовой адсорбции стеарата магния и других материалов, а также для анализа площади поверхности материала по БЭТ. Прибор прост в эксплуатации, точен и имеет высокую степень автоматизации. Влияние удельной поверхности на стеарат магния Исследования показали, что физические свойства смазки также могут оказывать существенное влияние на фармацевтический продукт, например состояние поверхности смазки, размер частиц, размер площади поверхности и структура кристаллов. В результате измельчения, сушки и хранения стеарат магния может изменить свои первоначальные физические свойства, тем самым влияя на его смазывающую функцию. Хороший стеарат магния имеет ламеллярную структуру с низким сдвигом [1] и может быть правильно смешан с активным компонентом препарата и другими вспомогательными веществами, чтобы обеспечить смазку между уплотненным порошком и стенками формы и предотвратить адгезию между порошком и формой. Чем больше удельная поверхность стеарата магния, тем легче его равномерно распределить по поверхности частиц в процессе смешивания и тем лучше смазка. Чем больше удельная поверхность стеарата магния, тем ниже предел прочности полученных таблеток, выше хрупкость, медленнее растворение и дезинтеграция при определенных условиях смеси и таблетпресса. Таким образом, площадь поверхности считается важным техническим показателем стеарата магния фармацевтического качества. Удельная поверхность стеарата магния, ...
Посмотреть большеКерамические материалы обладают рядом характеристик, таких как высокая температура плавления, высокая твердость, высокая износостойкость и стойкость к окислению, и широко используются в различных областях народного хозяйства, таких как электронная промышленность, автомобильная промышленность, текстильная, химическая промышленность и аэрокосмическая промышленность. . Физические свойства керамических материалов во многом зависят от их микроструктуры, что является важной областью применения СЭМ. Что такое керамика? Керамические материалы представляют собой класс неорганических неметаллических материалов, изготовленных из природных или синтетических соединений путем формовки и высокотемпературного спекания, и их можно разделить на общие керамические материалы и специальные керамические материалы. Специальные керамические материалы можно классифицировать по химическому составу: оксидная керамика, нитридная керамика, карбидная керамика, боридная керамика, силицидная керамика и т. д.; По своим характеристикам и применению можно разделить на структурную керамику и функциональную керамику. Рисунок 1. Микроскопическая морфология керамики из нитрида бора. СЭМ помогает изучать свойства керамических материалов С непрерывным развитием общества, науки и техники требования людей к материалам растут, что требует более глубокого понимания различных физических и химических свойств керамики. Физические свойства керамических материалов во многом зависят от их микроструктуры [1], а изображения СЭМ широко используются в керамических материалах и других областях исследований благодаря их высокому разрешению, широкому регулируемому диапазону увеличения и стереоскопическому изображению. Сканирующий электронный микроскоп с полевой эмиссией CIQTEK SEM5000 можно использовать для легкого наблюдения микроструктуры керамических материалов и связанных с ними продуктов, а также рентгеновский энергетический спектрометр можно использовать для быстрого определения элементного состава материалов. Применение СЭМ при исследовании электронной керамики Крупнейшим конечным рынком промышленности специальной керамики является электронная промышленность, где титанат бария (BaTiO3) широко используется в многослойных керамических конденсаторах (MLCC), термисторах (PTC) и других электронных устройствах. Компоненты из-за его высокой диэлектрической проницаемости, превосходных сегнетоэлектрических и пьезоэлектрических свойств, а также устойчивости к напряжению и изоляционных свойств [2]. С быстрым развитием электронной информационной индустрии спрос на титанат бария увеличивается, а электронные компоненты становятся все меньше и миниатюрнее, что также выдвигает более высокие требования к титанату бария. Исследователи часто регулируют свойства, изменяя температуру спекания, атмосферу, легирование и другие процессы подготовки. Но суть в том, что изменения в процессе приготовления вызывают изменение микроструктуры материала и, следовательно...
Посмотреть большеМеталлические материалы — это материалы с такими свойствами, как блеск, пластичность, легкая проводимость и теплопередача. Их обычно делят на два типа: черные и цветные металлы. К черным металлам относятся железо, хром, марганец и др. [1]. Среди них сталь является основным конструкционным материалом и называется «скелетом промышленности». До сих пор сталь по-прежнему доминирует в составе промышленного сырья. Многие сталелитейные компании и научно-исследовательские институты используют уникальные преимущества SEM для решения производственных задач и помощи в разработке новой продукции. СЭМ с соответствующими аксессуарами стал любимым инструментом сталелитейной и металлургической промышленности для проведения исследований и выявления проблем в производственном процессе. С увеличением разрешения и автоматизации СЭМ применение СЭМ для анализа и определения характеристик материалов становится все более распространенным [2]. Анализ отказов — это новая дисциплина, которая в последние годы стала популяризироваться военными предприятиями среди ученых-исследователей и предприятий [3]. Выход из строя металлических деталей может привести к ухудшению характеристик детали в незначительных случаях и даже к несчастным случаям, связанным с безопасностью жизни в серьезных случаях. Выявление причин сбоев посредством анализа сбоев и предложение эффективных мер по улучшению является важным шагом для обеспечения безопасной эксплуатации проекта. Поэтому полное использование преимуществ сканирующей электронной микроскопии внесет большой вклад в прогресс индустрии металлических материалов. 01 СЭМ-наблюдение разрушения металлов при растяжении Перелом всегда происходит в самом слабом месте металлической ткани и фиксирует много ценной информации обо всем процессе перелома. Поэтому при изучении переломов особое внимание уделяется наблюдению и изучению переломов. Морфологический анализ разрушения используется для изучения некоторых основных проблем, которые приводят к разрушению материала, таких как причина разрушения, природа разрушения и способ разрушения . Если необходимо глубже изучить механизм разрушения материала, обычно анализируют состав макрообластей на поверхности разрушения. Анализ разрушения теперь стал важным инструментом анализа отказов металлических компонентов. Рисунок 1. Морфология разрушения при растяжении CIQTEK SEM3100 По характеру разрушения перелом условно можно разделить на хрупкий и пластичный . Поверхность излома при хрупком изломе обычно перпендикулярна растягивающему напряжению, и с макроскопической точки зрения хрупкий излом представляет собой блестящую кристаллическую блестящую поверхность; в то время как пластичный перелом обычно имеет крошечную выпуклость на изломе и является фиброзным. Экспериментальной основой анализа разрушения является прямое наблюдение и анализ макроскопической морфологии и микроструктурных характеристик поверхности разрушения. Во многих случаях характе...
Посмотреть большеВ научных исследованиях пыльца имеет широкий спектр применения. По словам доктора Лими Мао из Нанкинского института геологии и палеонтологии Китайской академии наук, путем извлечения и анализа различной пыльцы, отложившейся в почве, можно понять, от каких родительских растений они произошли, и, таким образом, сделать вывод об окружающей среде и климате. в это время. В области ботанических исследований пыльца в основном предоставляет микроскопические справочные данные для систематической систематики. Что еще более интересно, доказательства пыльцы также могут быть использованы в уголовных расследованиях. Судебно-палинологическая экспертиза может эффективно подтвердить факты преступления, используя доказательства спектра пыльцы на одежде подозреваемого и на месте преступления. В области геологических исследований пыльца широко использовалась для реконструкции истории растительности, прошлой экологии и исследований изменения климата. В археологических исследованиях, посвященных ранним земледельческим цивилизациям и средам обитания человека, пыльца может помочь ученым понять историю раннего одомашнивания растений человеком, какие продовольственные культуры выращивались и т. д. Рис. 1. Изображение 3D-модели пыльцы (сделано доктором Лими Мао, продукт разработан доктором Оливером Уилсоном) Размер пыльцы варьирует от нескольких микрон до более двухсот микрон, что выходит за пределы разрешающей способности визуального наблюдения и требует использования микроскопа для наблюдения и изучения. Пыльца бывает самой разнообразной морфологии, включая вариации по размеру, форме, структуре стенок и орнаменту. Орнаментация пыльцы является одним из ключевых оснований для идентификации и различения пыльцы. Однако разрешение оптического биологического микроскопа имеет физические ограничения: трудно точно наблюдать различия между различными орнаментациями пыльцы, и даже орнаментацию некоторых мелких пыльц невозможно наблюдать. Поэтому ученым необходимо использовать сканирующий электронный микроскоп (СЭМ) с высоким разрешением и большой глубиной резкости, чтобы получить четкое представление о морфологических особенностях пыльцы. При изучении ископаемой пыльцы можно идентифицировать конкретные растения, которым принадлежит пыльца, чтобы более точно понять информацию о растительности, окружающей среде и климате того времени. Микроструктура пыльцы Недавно исследователи использовали CIQTEK Tungsten Filament SEM3100 и CIQTEK Field Emission SEM5000 для микроскопического наблюдения различных видов пыльцы . Рис. 2. Вольфрамовая нить CIQTEK SEM3100 и автоэмиссионный SEM5000. 1. Цветение вишни Пыльцевые зерна шаровидно-продолговатые. Имея три бороздки пор (без обработанной пыльцы поры не заметны), бороздки достигают обоих полюсов. Наружная стена с полосчатым орнаментом. 2. Кресс-салат китайский фиалковый (Orychophragmus violaceus) Морфология пыльцы китайского фиолетового кресс-салата эллипсоидная, с 3 бороздк...
Посмотреть большеРасширяемые микросферы, небольшие термопластические сферы, инкапсулированные газом, состоят из оболочки из термопластичного полимера и инкапсулированного жидкого алканового газа. Когда микросферы нагреваются, оболочка размягчается, и внутреннее давление воздуха резко возрастает, в результате чего микросферы резко расширяются в 60 раз по сравнению с их первоначальным объемом, давая им двойную функцию легкого наполнителя и вспенивающего агента. Будучи легким наполнителем, расширяемые микросферы могут значительно снизить вес продуктов с очень низкой плотностью, и измерение их плотности очень важно. Рисунок 1 Расширяемые микросферы Принцип работы измерителя истинной плотности серии EASY-G 1330 Измеритель истинной плотности серии EASY-G 1330 основан на принципе Архимеда, используя газ с малым молекулярным диаметром в качестве зонда и уравнение состояния идеального газа PV = nRT для расчета объема газа, выделяемого из материала при определенных условиях температуры и давления. чтобы определить истинную плотность материала. Газ с малым молекулярным диаметром может использоваться в качестве азота или гелия, поскольку гелий имеет наименьший молекулярный диаметр и является стабильным инертным газом, который нелегко вступает в реакцию с образцом путем адсорбции, поэтому в качестве газа-заменителя обычно рекомендуется гелий. Преимущества измерителя истинной плотности серии EASY-G 1330 В измерителе истинной плотности серии EASY-G 1330 в качестве зонда используется газ, который не повреждает испытуемый образец, и образец можно сразу переработать; а в процессе тестирования газ не вступает в реакцию с образцом и не вызывает коррозии оборудования, поэтому коэффициент безопасности процесса использования высок; кроме того, газ обладает характеристиками легкой диффузии, хорошей проницаемости и хорошей стабильности, что позволяет быстрее проникать во внутренние поры материала и делать результаты испытаний более точными. Экспериментальная процедура ①Прогрев: откройте главный клапан баллона и редукционный стол, включите выключатель питания не менее чем за полчаса до этого, выходное давление редукционного стола газа: 0,4 ± 0,02 МПа; ②Калибровка прибора: перед началом эксперимента откалибруйте прибор с помощью стандартных стальных шариков, чтобы убедиться, что объем испытанных стальных шариков во всех трубопроводах оборудования находится в пределах стандартного значения перед началом эксперимента; ③Определение объема пробирки с образцом: установите пустую пробирку с образцом в полость прибора и затяните ее, настройте программное обеспечение, определите объем пробирки с образцом и запишите соответствующий объем пробирки с образцом в конце эксперимента; ④Взвешивание образца: Чтобы уменьшить ошибку тестирования, необходимо взвесить как можно больше образцов. При каждом тесте образец должен взвешиваться примерно до 3/4 объема пробирки, взвешиваться массой пустой пробирки M1, добавлять образец и взвесьте М2 д...
Посмотреть большеВ последнее время мировые цены на нефть резко выросли, и индустрия возобновляемых источников энергии, представленная солнечными фотоэлектрическими (PV) электростанциями, привлекла широкое внимание. В центре внимания находятся перспективы развития и рыночная стоимость солнечных фотоэлектрических элементов, которые являются основным компонентом производства фотоэлектрической энергии. На мировом рынке аккумуляторов фотоэлектрические элементы составляют около 27%[1]. Сканирующий электронный микроскоп играет большую роль в совершенствовании производственного процесса и связанных с ним исследованиях фотоэлектрических элементов. Фотоэлектрический элемент представляет собой тонкий лист оптоэлектронного полупроводника, который преобразует солнечную энергию непосредственно в электрическую энергию. В настоящее время коммерческие фотоэлектрические элементы массового производства представляют собой в основном кремниевые элементы, которые делятся на элементы из монокристаллического кремния, элементы из поликристаллического кремния и элементы из аморфного кремния. Методы текстурирования поверхности для повышения эффективности солнечных элементов В реальном процессе производства фотоэлектрических элементов, чтобы еще больше повысить эффективность преобразования энергии, на поверхности элемента обычно создается специальная текстурированная структура, и такие элементы называются «неотражающими» элементами. В частности, текстурированная структура на поверхности этих солнечных элементов улучшает поглощение света за счет увеличения количества отражений излучаемого света на поверхности кремниевой пластины, что не только снижает отражательную способность поверхности, но и создает внутри световые ловушки. Ячейка, тем самым значительно увеличивая эффективность преобразования солнечных элементов, что важно для повышения эффективности и снижения стоимости существующих кремниевых фотоэлектрических элементов[2]. Сравнение плоской поверхности и поверхности пирамидальной структуры По сравнению с плоской поверхностью, кремниевая пластина с пирамидальной структурой имеет более высокую вероятность того, что отраженный свет падающего света снова будет действовать на поверхность пластины, а не отражаться непосредственно обратно в воздух, тем самым увеличивая количество рассеянного света. и отражается на поверхности структуры, позволяя поглощать больше фотонов и образуя больше электронно-дырочных пар. Путь света для разных углов падения света на пирамидальную структуру Обычно используемые методы текстурирования поверхности включают химическое травление, реактивное ионное травление, фотолитографию и механическую обработку канавок. Среди них метод химического травления широко используется в промышленности из-за его дешевизны, высокой производительности и простоты метода [3] . Для фотоэлементов из монокристаллического кремния обычно используется анизотропное травление щелочным раствором на разных кристаллических ...
Посмотреть больше